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Abstract
We discuss non-Fermi liquid and quantum critical behaviour in heavy-fermion
materials, focusing on the mechanism by which the electron mass appears to
diverge at the quantum critical point. We ask whether the basic mechanism
for the transformation involves electron diffraction off a quantum critical spin-
density wave, or whether a breakdown in the composite nature of the heavy
electron takes place at the quantum critical point. We show that the Hall constant
changes continuously in the first scenario, but may ‘jump’ discontinuously
at a quantum critical point where the composite character of the electron
quasiparticles changes.

1. Introduction: mass divergence and the breakdown of the quasiparticle concept

A key element in the Landau Fermi liquid theory [1–3] is the idea of quasiparticles: excitations
of the Fermi sea that carry the original charge and spin quantum numbers of the non-
interacting particles from which they are derived, but whose mass m∗ is renormalized by
interactions. What is the fate of quasiparticles when interactions become so large that the
ground state is no longer adiabatically connected to a non-interacting system? It is known
that the quasiparticle mass diverges in the approach to a zero-temperature ferromagnetic
instability [4–7]. Recent measurements on three-dimensional heavy-fermion compounds
suggest [8–10] that the quasiparticle mass also diverges in the approach to an antiferromagnetic
quantum critical point. A central property of the Landau quasiparticle is the existence of a finite
overlap ‘Z’, or ‘wavefunction renormalization’ between a single-quasiparticle state, denoted
by |qp−〉 and the state formed by adding a single electron to the ground state, denoted by
|e−〉 = c

†
kσ |0〉,

Z = |〈e−|qp−〉|2. (1)

This quantity is closely related to the ratio m/m∗ of the electron to the quasiparticle
mass, i.e. Z ∼ m/m∗, and if the quasiparticle mass diverges, the overlap between the
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quasiparticle and the electron state from which it is derived is driven to zero, signalling
a breakdown in the quasiparticle concept. Thus the divergence of the electron mass at an
antiferromagnetic quantum critical point (QCP) has important consequences, for it indicates
that antiferromagnetism causes a breakdown in the Fermi liquid concept [?].

In the late 1970s, unprecedented mass renormalization was discovered in heavy-fermion
compounds. In these materials, quasiparticle masses of order 100, but sometimes in excess
of 1000 bare electron masses have been recorded, a significant fraction of which is thought to
derive from their close vicinity to an antiferromagnetic quantum critical point. The discovery
of the cuprate superconductors in the late 1980s further sharpened interest in the effects of
strong antiferromagnetic interactions.

In these materials, unconventional normal-state properties have led many to believe that
a combination of strong antiferromagnetic correlations and low dimensionality may lead to
a complete breakdown of the electron quasiparticle. Against this backdrop, heavy-fermion
materials acquire a new significance. The appearance of non-Fermi liquid behaviour, often in
conjunction with anisotropic superconductivity near a heavy-fermion quantum critical point,
tempts us to believe that there may be certain aspects of the quantum critical physics that are
shared between heavy-fermion and cuprate materials. The clear advantage of heavy fermions
lies in the ability to use pressure [12] or chemical pressure [10] to tune them continuously from
an unambiguous three-dimensional Fermi liquid into an antiferromagnetic quantum critical
point where non-Fermi liquid behaviour is consistently manifested, permitting a first systematic
study of the breakdown of the Fermi liquid in the presence of critical antiferromagnetism (see
figure 1).
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Figure 1. A schematic illustration of quantum critical point physics in heavy-fermion metals. In
cerium and uranium heavy-fermion systems, pressure drives the system from the antiferromagnet,
into the paramagnetic phase. In ytterbium systems, the situation is reversed, and pressure induces
antiferromagnetism. The inset emphasizes the point that if the Fermi temperature goes to zero at
the quantum critical point, then a new class of universal excitations is expected above T ∗

F .
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2. Properties of the heavy-fermion quantum critical point

There are several heavy-fermion systems that have been tuned to an antiferromagnetic quantum
critical point (see table 1). Two stoichiometric heavy-fermion systems, CeNi2Ge2 [13] and
U2Pt2In [19], lie almost at a quantum critical point at ambient pressure, whilst the compounds
CeCu6 [10,18] and YbRh2Si2 [17] can be tuned to a quantum critical point with a tiny amount
of chemical pressure, applied by doping. There is a growing list of antiferromagnetic cerium
and uranium systems that can be driven paramagnetic by the application of pressure, including
CePd2Si2 [12], U2Pd2In [19], CeIn3 [12] and CeRh2Si2 [23]. Diamond anvil methods are
expected to substantially add to this list in the near future.

Table 1. Selected heavy-fermion compounds with quantum critical points.

Compound Pc/xc Cv/T → ∞? ρ ∼ T a Reference

CeNi2Ge2 Pc = 0 log(T0/T )
(a) T 1.2 [13–16]

YbRh2(Si1−xGex)2 xc = 0.05 log(T0/T )
(b) T [17]

Ce(Cu1−xAux)6 xc = 0.016 log(T0/T ) T + c [10]

CeCu6−xAgx xc = 0.09 log(T0/T ) T 1.1 [18]

U2Pt2In Pc = 0 log(T0/T ) T [19]

U2Pd2In Pc < 0 ? T + c [19]

CePd2Si2 Pc > 0 ? T 1.2 [13]

CeIn3 Pc > 0 ? T 1.5 [13]

U3Ni3Sn4 Pc > 0 No ? [20]

CeCu2Si2 Pc = 0 No T 1.5 [21]

(a) New data [22] show a stronger divergence at lower temperatures, and γ ∼ A − B
√
T at

intermediate temperatures.
(b) At low temperatures, γ diverges more rapidly than log(T /T0) [17].

By its very nature, quantum criticality is hypersensitive to disorder, which can never
be totally eliminated [24]. Nevertheless, the quantum critical point in the idealized limit
of a perfectly clean system poses an intellectual challenge in its own right that must be
understood before moving on to the more complex effects of disorder. With this guiding
philosophy in mind, we will not discuss those materials far from stoichiometry, in which large
inhomogeneities are suspected. The discussion here will focus on materials that are explicitly
stoichiometric and tuned to the critical point by pressure, or those where critical behaviour is
insensitive to whether small doping or pressure was used to tune them to criticality. These
materials show many common properties.

The key properties of these compounds are:

• Fermi liquid behaviour in the paramagnetic phase [20, 25]. One of the classic features
of Fermi liquid behaviour, a quadratic temperature dependence of the resistivity ρ =
ρ0 + AT 2, develops at ever lower temperatures, in the approach to the quantum phase
transition, indicating that Fermi liquid behaviour survives right up to the quantum critical
point.

• Divergent specific heat coefficients at the critical point. In many cases, the divergence
displays a logarithmic temperature dependence:

γ (T ) = Cv(T )

T
= γ0 log

[
T0

T

]
. (2)
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This suggests that the Fermi temperature renormalizes to zero and the quasiparticle
effective masses diverge:

T ∗
F → 0

m∗

m
→ ∞ (3)

at the quantum critical point of these three-dimensional materials. Further support for this
conclusion is provided by the observation that the quadratic coefficientA of the resistivity
grows in the approach to the quantum critical point [20]. As yet however, surprisingly
little is known about the variation of the zero-temperature linear specific heat coefficient
in the approach to the quantum critical point.

• Quasi-linear temperature dependence in the resistivity:

ρ ∝ T 1+ε (4)

with ε in the range 0–0.6. The most impressive results to date have been observed for
YbRh2Si2, where a linear resistivity over three decades develops at the quantum critical
point [17].

• Non-Curie spin susceptibilities:

χ−1(T ) = χ−1
0 + cT a (5)

with a < 1 observed in critical CeCu6−xAux (x = 0.1), YbRh2(Si1−xGex)2 (x = 0.05)
and CeNi2Ge2. In critical CeCu6−xAux , the differential magnetic susceptibility dM/dB
also exhibits B/T scaling in the form

(dM/dB)−1 = χ−1
0 + cT ag[B/T ] (6)

and extensive inelastic neutron measurements show that the dynamical spin susceptibility
exhibits E/T scaling [26, 27] throughout the Brillouin zone, parametrized in the form

χ−1(q, ω) = T af (E/T ) + χ−1
0 (q) (7)

where a ≈ 0.75 and F [x] ∝ (1 − ix)a . Scaling behaviour with a single exponent in
the momentum-independent component of the dynamical spin susceptibility suggests
an emergence of local magnetic moments which are critically correlated in time at
the quantum critical point. E/T and B/T scaling, with unusual exponents, represent
important signatures of universal critical fluctuations, as we now discuss.

3. Is there universality at a heavy-fermion QCP?

Usually, the physics of a metal above its Fermi temperature depends on the detailed chemistry
and band-structure of the material: it is non-universal. A divergence in the linear specific heat
of heavy-fermion systems at the quantum critical point offers the possibility of a very different
state of affairs, for if the renormalized Fermi temperature T ∗

F (P ) can be tuned to become
arbitrarily small compared with the characteristic scales of the material, then we expect the
‘high-energy’ physics above the Fermi temperature T ∗

F to be itself universal. This is an unusual
situation, more akin to that in particle physics. This potential for universal fixed-point physics
above the Fermi temperature is of particular interest, for we expect that like for a Fermi liquid, it
should involve a robust set of universal excitations, or quasiparticles, describing the emergence
of magnetism, whose interactions and energies only depend on the symmetry of the crystal
plus a small set of relevant parameters.

In classical statistical mechanics, universality manifests itself through the appearance of
scaling laws and critical exponents that are so robust to details of the underlying physics
that they recur in such diverse contexts as the critical point of water and the Curie point of
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a ferromagnet. Dimensionality plays a central role in this universality. Provided that the
dimensionality of the classical critical point lies below its ‘upper critical dimension’, then
the thermodynamics and correlation functions near the critical point are dominated by a single
length scale. The emergence of a single length in the correlation functions and thermodynamics
is called ‘hyperscaling’. At the critical point, the Fourier transformed correlation function takes
the form

S(q) ∝ 1

|q − Q|2−η (8)

where Q is the ordering wavevector. Suppose the system has finite spatial extent L in one or
more directions. Below the upper critical dimension, L is the only spatial scale in the problem,
and the correlation function now develops a finite correlation length ξ ∝ L, so

S(q) = 1

q2−η F (qL) (9)

where F(x) is a universal function of dimensionless parameters. The short-distance physics
does not affect the finite correlation length induced by the finite size.

By contrast, if the system is above the upper critical dimension, the quantum critical point
is no longer dominated by a single length scale and ‘naive’ scaling laws involve corrections
associated with the short-range interaction between the critical modes [28]. For example, the
critical theory governing the liquid–gas critical point, the so-called φ4-theory, has an upper
critical dimension du = 4. Above four dimensions, the short-range interactions, denoted by a
parameter U , affect the correlation length when the system is near the critical point, so now
the correlation function above the upper critical dimension takes the form

S(q) = 1

q2
F(qξ) (10)

where the correlation length is now more than L, determined by a function of the form

ξ−1 = L−1G(U,L) (11)

where G(x) is a dimensionless function determined by the Gaussian fluctuations about the
mean-field theory. Indeed, above d = 4, the scaling dimensions of U are [U ] = Ld−4, so U
and L must enter in the combination U/Ld−4. Detailed calculations show that G ∝ U 1/2, so

ξ−1 ∝ L−1

(
U

Ld−4

)1/2

(12)

above the upper critical dimension d = 4.
Universality in the context of quantum criticality implies the extension of these same

principles to the quantum fluctuations that develop at a second-order instability in the ground
state. Quantum critical behaviour implies a divergence in both the long-distance and long-time
correlations in the material. In quantum statistical mechanics, temperature provides a natural
cut-off timescale

τT = h̄

kBT
(13)

beyond which coherent quantum processes are dephased by thermal fluctuations. We are thus
dealing with a problem of finite-size scaling in the time direction [28]. If a quantum critical
system exhibits hyperscaling, then τT must set the temporal correlation length τ , i.e. τ ∝ τT ,
so at the quantum critical point the correlation functions in the frequency domain take the form

F(ω, T ) = 1

ωα
f (ωτ) = 1

ωα
f (h̄ω/kBT ). (14)
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Since dynamic response functions at energy E = h̄ω are directly proportional to correlation
functions at frequency ω via the fluctuation dissipation theorem, it follows that dynamic
response functions at a quantum critical point below its upper critical dimension are expected
to obey E/T scaling [29]:

F(E, T ) = 1

Eα
f (E/kBT ). (15)

Above the upper critical dimension, naive scaling no longer applies. In this case the
strength of the short-range interactions between the critical modes play the role of ‘dangerous
irrelevant variables’ which affect the correlation time [30]. In a quantum φ4- or ‘Hertz–Millis’
field theory [32,33], the temporal correlation time above the upper critical dimension takes the
form

τ−1 = τ−1
T R(T ,U) (16)

where R(T ,U) is a dimensionless universal function. Near a quantum critical point, the
dynamical correlation time τ scales with the spatial correlation length ξ through a dynamical
exponent z such that

τ−1 ∝ ξ−z. (17)

For a ‘Hertz–Millis’ theory of a critical spin-density wave [32, 33], z = 2 and T and U enter
into R as the dimensionless combination UT (d+z−4)/z = UT 1/2. Furthermore, R(X) ∝ X;
thus τ−1 ∼ UT 3/2 in three spatial dimensions, corresponding to E/T 3/2 scaling [30]:

F(E, T ) = 1

Eα
f (Eτ) = 1

Eα
f (E/T 3/2). (18)

For a generic effective Lagrangian, ω/T scaling will not occur above the upper critical
dimension [31]. Thus the observation of E/T scaling in the dynamical spin susceptibility
indicates that the underlying physical theory lies beneath its upper critical dimension. What
is this universal ‘non-Fermi liquid’ physics, and what is the mechanism by which the mass of
the heavy electrons diverges in the approach to the antiferromagnetic instability?

The existence of a Fermi liquid either side of the antiferromagnetic quantum critical point
in heavy-fermion materials affords a unique perspective on the above question, for it tells us
that the universal Lagrangian governing the quantum criticality must find expression in terms
of fields that describe the quasiparticles in the Fermi liquid. If we write the low-energy physics
of the Fermi liquid in terms of a Lagrangian, we expect to be able to divide it into three terms:

L = LF + LF−M + LM (19)

where LF describes the free energy of the paramagnetic Fermi liquid, far from the magnetic
instability: this term would involve the short-range interactions between the quasiparticles and
the band-structure. The last term, LM , describes the magnetic excitations that emerge above
the energy scale T ∗

F (P ) and LF−M describes the way that the quasiparticles couple to and
decay into these magnetic modes. We may then ask:

(1) What is the nature of the quantum fields that carry the magnetism, whose activation at
energy scales above T ∗

F (P ) is described by the Lagrangian LM?

(2) What are the interaction terms LF−M that couple the low-energy quasiparticles to these
universal, high-energy excitations?
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4. Spin-density waves versus composite quasiparticles

We shall now contrast two competing answers to this question, one in which non-Fermi liquid
behaviour derives from Bragg diffraction of the electrons off a critical spin-density wave, and
another in which the bound-state structure of the composite heavy fermions breaks down at
the QCP.

If we suppose first that the QCP is a spin-density wave instability [34] of the Fermi surface,
then non-Fermi liquid behaviour results from the Bragg scattering of electrons off a critical
spin-density wave. In this ‘weak-coupling’ approach LF−M is a classical coupling between
the modes of a spin-density wave and the Fermi liquid:

L
(1)
F−M = g

∑
k,q

�σ−q · �Mq (20)

where �σ−q = ∑
k c

†
k−q �σck is the electronic spin density and �Mq represents the amplitude of

the spin-density wave at wavevector q. In the paramagnetic Fermi liquid, the spin fluctuations
have a finite correlation length and correlation time: it is the virtual emission of these soft
fluctuations via the process

e− � e− + spin fluctuation (21)

that then gives rise to mass renormalization. Ultimately, once the magnetic order develops,
electron Bragg scattering off the spin-density wave causes the Fermi surface to ‘fold’ along
lines in momentum space. In this picture, the electrons which form the Fermi surface on the
paramagnetic and the antiferromagnetic side of the quantum critical point are closely related
to one another.

The alternative ‘strong-coupling’ response to these questions treats the heavy-fermion
metals as a Kondo lattice of local moments [35]. From this perspective, heavy electrons are
composite bound states formed between local moments and high-energy conduction electrons.
Here, the underlying spinorial character of the magnetic fluctuations plays a central role in the
formation of heavy quasiparticles. For instance, the Fermi surface volume or Luttinger sum
rule [36] in the paramagnetic phase ‘counts’ both the number of conduction electrons and the
number of heavy-electron bound states, given by the number of spins:

2
VFS
(2π)3

= ne + nspins (22)

where VFS is the volume of the Fermi surface, ne is the number of conduction electrons
per unit cell and nspins is the number of spins per unit cell [37, 38]. This scenario departs
fundamentally from the spin-density-wave scenario if we suppose that at the critical point,
the bound states which characterize the Kondo lattice disintegrate. In this case, the Fermi
liquids in the paramagnetic and magnetic phases involve different electron quasiparticles.
The antiferromagnet involves a fluid of conduction electrons immersed in a lattice of ordered
moments. By contrast, the heavy-fermion paramagnet involves quasiparticles built from a
bound state formed between conduction electrons and the local moments: the magnetic degrees
of freedom are confined and manifest themselves as new spinorial degrees of freedom. The
Fermi surface reconfigures at the QCP to accommodate the changing character and density of
the quasiparticles. From this point of view, it is natural to suppose that the spinorial character
of the magnetic degrees of freedom seen in the heavy-fermion phase will also manifest itself
in the decay modes of the heavy quasiparticles. For example, the heavy quasiparticles could
decay into a neutral ‘spinon’ and a spinless, charge-e fermion, schematically e−

σ � sσ + χ−,
corresponding to

L
(2)
F−M = g

∑
k,q

[s†
k−qσχ

†
q ckσ + H.c]



R730 P Coleman et al

where s†
q is a neutral spin-1/2 boson and χ a spinless charge-e fermion, reminiscent of a hole

in a Nagaoka ferromagnet [39, 40]. Indeed, if the magnetism enters as a spinorial field, its
coupling to the electron field can only occur via an inner product over the spin indices as
shown in L(2)F−M . The collective magnetic correlations of the spinor field oblige us to cast it as
a boson, and likewise, statistics forces us to introduce the additional spinless fermion into the
coupling. In other words, the idea that magnetism enters into the decay modes as a spinorial
field constrains the coupling Lagrangian to the above form.

In this second picture, the scale T ∗
F (P ) is the threshold energy above which the composite

particles decay into their constituent particles and magnetism develops via the condensation of
the spinon field. This, in turn, transforms the Fermi surface by opening up a resonant channel
between the heavy electrons and the spinless fermions.

Let us now examine these alternatives in greater detail (see figure 2).
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Figure 2. Contrasting the weak- and strong-coupling pictures of an antiferromagnetic QCP.

In the spin-density-wave picture, the internal structure of the quasiparticles is unimportant:
the physics is entirely described by the interaction between the Fermi surface and
critical antiferromagnetic spin fluctuations (figure 3(A)). Bragg reflections off these critical
fluctuations strongly couple the lines of excitations on the Fermi surface that are separated by
the critical wavevector Q. Along the hot lines, the electron energies are given by

εk = εk−Q = 0. (23)

Beyond the critical point, the Fermi surface folds along these ‘hot lines’, pinching into two
separate and smaller Fermi surfaces, as shown in figure 3(A). At the quantum critical point,
quasiparticles along the ‘hot lines’ are critically scattered with divergent scattering rate and
effective mass.

The quantum critical behaviour predicted by this model has been extensively studied
[32, 33], and the effective ‘Hertz–Millis’ action describing the critical fluctuations takes the
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QCP AFM
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Figure 3. Competing scenarios for the antiferromagnetic QCP in heavy-fermion materials: (A) the
spin-density-wave scenario, where the Fermi surface ‘folds’ along lines separated by the magnetic
Q-vector, pinching off into two separate Fermi surface sheets; (B) a sudden reconfiguration of the
Fermi surface accompanies breakdown of composite heavy fermions. The Fermi surface in the
antiferromagnetic phase only incorporates the conduction electrons.

form

LM =
∑
iωn

∫
d3q

(2π)3
|M(q, ωn)|2χ−1

0 (q, ωn) + U
∫

d3r dτ M(r, τ )4 (24)

where

χ−1
0 (q, ωn) = [

(q − Q)2 + ξ−2 + |ωn|/7Q

]
χ−1

0 (25)

is the inverse dynamical spin susceptibility of the magnetic fluctuations. The linear damping
rate of the magnetic fluctuations is derived from the density of particle–hole excitations in the
Fermi sea. ξ−1 ∼ (P − Pc)

1/2 is the inverse spin correlation length, whilst τ−1 = 7Qξ
−2

is the inverse spin correlation time. An important feature of this ‘φ4’-Lagrangian is that the
momentum dependence enters with twice the power of the frequency dependence and τ ∼ ξz,

where z = 2 (the dynamical critical exponent of this theory), so the time dimension counts as
two space dimensions, and the effective dimensionality of the theory is

D = d + z = d + 2. (26)

Assuming d = 3 in heavy-fermion systems, then D = 5 exceeds the upper critical dimension
Dc = 4 for a φ4-theory. This has three immediate consequences:

• the interactions amongst the critical modes are ‘irrelevant’, scaling to zero at large scales,
so the long-wavelength antiferromagnetic modes are non-interacting Gaussian modes,
or overdamped ‘phonons’; the absence of non-linearities in the interactions means that
singularities in the magnetic response will remain confined to the region around the Bragg
point, and will not manifest themselves in the uniform susceptibility;

• the temporal correlation time entering into the magnetic response functions will involve
E/T 3/2, rather than E/T scaling [29] (see the earlier discussion);
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• the correlation functions and thermodynamics will not exhibit anomalous scaling
exponents.

The first point is difficult to reconcile with the observation of a singular temperature dependence
in the uniform magnetic susceptibility. The second and third points are incompatible with
the divergence of the specific heat and the observation of E/T scaling with anomalous
exponents [10]. To gain more insight into the physics that lies behind these difficulties, let
us examine the nature of the spin fluctuations predicted in this picture. The Gaussian critical
spin fluctuations predicted by the quantum spin-density-wave picture mediate an effective
interaction given by

Veff (q, ω) = g2 χ0

(q − Q)2 − iω/7Q

. (27)

In real space, this corresponds to a ‘modulated ’, but unscreened Coulomb potential

Veff (r, ω = 0) ∝ 1

r
eiQ·r. (28)

The rapid modulation in the above potential produces Bragg scattering. Unlike for a critical
ferromagnet, where the singular scattering potential affects all points of the Fermi surface,
here the modulated potential only couples electron quasiparticles along ‘hot lines’ on the
Fermi surface that are separated by the wavevector Q.

In practice, thermal spin fluctuations of frequency ω ∼ kBT are excited, so electrons
within a strip of momentum width

:k ∼
√
kBT

7Q

(29)

around the hot lines are strongly scattered by the critical fluctuations. The spin-fluctuation
self-energy produced by these critical fluctuations is denoted by the Feynman diagram given by

;(k, ω) = −T
∑
q,ν

g2χ0(q, ν)G(k − q, ω − ν) (30)

q

k−qk

where g is the strength of the coupling between spin fluctuations and conduction electrons and
G(k, ω) = [ω− εk]−1 is the Green function of the conduction electrons. Along the hot lines,
this produces a marginal self-energy of the form ;(khot , ω) ∼ ω ln[max(ω, T )/7], giving
rise to a mass renormalization with a weak logarithmic divergence

m∗

m
∼ 1 − ∂;

∂ω
∼ ln(7/T ). (31)

This weak logarithmic divergence only extends along the narrow ‘hot band’ of width :k ∼√
T : elsewhere on the Fermi surface the electrons are essentially unaffected by the critical

fluctuations. For this reason the critical spin fluctuations should only produce a weak singularity
in the specific heat, if the quantum critical behaviour is described by a spin-density-wave
instability. The residual contribution to the specific heat produced by this narrow band of
non-Fermi liquid behaviour is expected to depend on

√
T . This can been seen by noting that

the singular contribution to the free energy at the quantum critical point is due to the Gaussian
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fluctuations of the critical antiferromagnetic modes, given by

Fsing = T
∑
iωn

∫
d3q

(2π)3
log[χ−1

0 (q, ωn)]

=
∫

d3q

(2π)3

∫
dν

π

[
n(ν) +

1

2

]
tan−1

[
ν/7Q

[(q − Q)2]

]
. (32)

By rescaling using ν = uT and (q − Q) = x(T /7Q)
1/2, we see that

Fsing = T 5/2

7
3/2
Q

∫
d3x

(2π)3

∫
du

2π
[coth(u/2)] tan−1

[ u
x2

]
(33)

scales as T 5/2, giving rise to a contribution to the linear specific heat coefficient ∂2F/∂T 2 ∼√
T . Thus the specific heat at the QCP of a critical three-dimensional spin density contains a

singular
√
T -component, but it is not divergent.

Some aspects of the above picture are modified by disorder. Rosch [41] has argued
that a disorder can significantly modify the transport properties of the spin-density-wave
picture. Thus in a strictly clean system, the resistivity should be short-circuited by the
electrons far from the hot lines, giving rise to a T 2-, rather than a quasi-linear resistivity.
High temperatures plus disorder give rise to a resistivity dominated by the average scattering
rate, given approximately by a product of the width of the hot line and the linear scattering
rate on the hot line (

√
T × T = T 1.5). Rosch has pointed out that the crossover between these

two limits is extremely broad, and gives a quasi-linear resistivity. However, this still does not
account for the divergence of the specific heat and the E/T scaling.

One proposed resolution to this paradox is to suppose that the spin fluctuations in the
heavy-fermion quantum critical systems form a two-, rather than three-dimensional spin fluid.
If, for example, due to the effects of frustration, over the observed temperature range, the
spin fluctuations were confined to decoupled planes in real space, then the critical spin physics
would be two dimensional and the effective dimensionality of the quantum critical point would
be 2 + z = 4, putting the fluctuations at their critical dimensionality. This explanation was first
advanced by Rosch and co-workers to account for the logarithmic dependence of the specific
heat coefficient in CeCu6−xAux (x = 0.1) [45]. Inelastic neutron scattering experiments on
this material do provide circumstantial support for reduced dimensionality, showing that the
critical scattering appears to be concentrated along linear, rather than at point-like regions in
reciprocal space [10,45]. In an independent discussion, Mathur et al [12] have suggested that
the spin fluctuations in quantum critical CePd2Si2 and CeGe2Ni2 might be driven to be two
dimensional by frustration.

This two-dimensional SDW picture, however, cannot explain the anomalous exponents—
both at and far away from the ordering wavevector Q—in the neutron and magnetization
data. Together with the E/T scaling, the experiments instead suggest a fundamentally new
interacting fixed point. There are two approaches in the search for such a new universality class.
Si et al [42] have recently proposed that quasi-two-dimensional spin fluctuations interact with
the Kondo effect to produce a ‘local quantum critical point ’ which gives rise to localized spin
fluctuations with critical correlations in time that exhibitE/T scaling. This picture raises many
questions. Do the quasi-2D fluctuations, seen in CeCu6−xAux , also occur in the other heavy-
fermion systems with a divergent specific heat coefficient ? More microscopically, why should
quantum critical heavy-fermion systems have a tendency towards quasi-two-dimensional spin
fluids, when the transport is highly three dimensional?

On the other hand, Coleman, Pépin and Tsvelik [43] advance the view that the anomalous
quantum critical behaviour seen in these systems is a feature of a truly three-dimensional spin
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system, but one governed by a new class of quantum critical behaviour with upper critical
dimension larger than three. But this too raises many questions—in particular, can a field
theory of the form (19) be found in which the upper critical spatial dimension is greater than
three, and what experimental signatures would this lead to?

The two issues—whether the quantum criticality in heavy fermions is quasi-two
dimensional or purely three dimensional, and whether or not it represents a fundamentally new
class of quantum critical behaviour, lie at the heart of the current debate about these systems.
Experimentally, it remains a task of high priority to examine the momentum distribution of the
critical scattering, and the extent to which E/T scaling prevails, in stoichiometric quantum
critical heavy-fermion systems. More detailed information on manifestly three-dimensional
systems, such as cubic quantum critical CeIn3 would also be useful in this respect.

5. Does the Hall constant jump at a QCP?

We should like to end this discussion by asking what other independent experimental signatures,
over and above the divergence of the linear specific heat and neutron scattering, can be used
to test the mechanism by which the Fermi surface transforms between the paramagnet and
the antiferromagnet. Here, one of the most promising, but surprisingly, untested probes is the
Hall constant. If the same quasiparticles are involved in the conduction process on both the
paramagnetic and the antiferromagnetic sides of the quantum critical point, then we expect the
Hall constant to vary continuously through the quantum phase transition. If by contrast, the
entire character of the Fermi surface changes, for instance, via the creation or destruction of
fermionic resonances at the Fermi energy, then we expect that the Hall constant will encounter
a discontinuity at the quantum critical point. In the most extreme example, it may even
change sign.

To see the logic in this discussion more clearly, consider first the case of a spin-density
wave. In a Boltzmann transport approach, the Hall conductivity of the Fermi surface is [44]

σxy ∝
∫

dkz

∫ (
v × dv

72
tr (k)

)
(34)

where v = ∇kEk is the group velocity on the Fermi surface. The above integral corresponds
to the average area swept out by the group-velocity vector around the Fermi surface. When the
spin-density wave develops, Bragg reflections cause the Fermi surface to fold and pinch into
two separate sheets, as illustrated in figure 3. The group velocity on the two separate Fermi
surfaces that develop is determined by the renormalized energy

E±
k = 1

2
(εk + εk+Q)±

√(
εk − εk+Q

2

)2

+ g2M2
Q (35)

where ± refers to the dispersion on the two separate sheets,MQ is the staggered magnetization
at wavevector Q and εk is the quasiparticle dispersion in the heavy Fermi liquid. Notice that
away from the hot lines, the change in the group velocity induced by the magnetic order is
second order in the staggered magnetization and that, furthermore, the Fermi surface volume
is conserved through the transition

:vFS = 0

∇kE
±
k = ∇kεk + O(M2

Q).
(36)

Away from the hot lines we also expect the scattering rate to change no faster than the square
of the magnetization. Near the quantum critical point, the Fermi surface becomes increasingly
sharp in the vicinity of the hot lines which develop into ‘corners’ of the Fermi surface (figure 4).
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Figure 4. The Fermi surface in (a) the paramagnetic phase and (b) the spin-density-wave phase,
showing how regions 1–4 have folded and pinched to form two new Fermi surfaces. (c) Expanded
detail of the ‘corners’ of the Fermi surface in the vicinity of the saddle point along the hot line.
Points P and P′, Q and Q′ correspond to quasiparticles with the same group velocity and scattering

rate, but equal and opposite effective masses. Thus the integrals
∫ Q
P

dl × l = − ∫ P ′
Q′ dl × l and the

total contribution to the Hall conductivity from the corners of the Fermi surfaces identically cancel.

Approaching the quantum critical point from the magnetic side, the Hall conductivity can be
divided into two parts:

σxy ∼
{∫

sheets

dkz +
∫
corners

dkz

} ∫ (
v × dv

72
tr (k)

)
. (37)

The contribution to this integral from the ‘sheets’ of the Fermi surface converges to that of the
paramagnetic Fermi liquid. The corners of the Fermi surface correspond to saddle points in
the electron dispersion, and close to the quantum critical point the corner regions on the two
daughter Fermi surfaces are exact mirror images of one another with identical scattering rates
but equal and opposite group velocities and mass tensors: for this reason the contributions
to the Hall conductivity from the saddle-point region of one Fermi surface identically cancel
the corresponding contribution from the corners of the second (figure 4(c)). In the remaining
portions of the Fermi surface, the change in the quasiparticle energy and group velocity is
proportional to MQ. Since the change in dispersion of the electrons away from the hot lines
is dependent on the square of the magnetization, we expect the change in the Hall constant to
grow quadratically with the staggered magnetization. A quantum critical point is driven by
diffraction off a spin-density wave:

:RH ∝ M2
Q (SDW) (38)

which in the simplest models, with MQ ∝ |P − Pc|1/2, would imply a jump in dRH/dP , but
no jump in RH . The continuity of the Hall constant in this scenario is a direct consequence of
the continuity in the quasiparticle character, through the transition.

By contrast, if a breakdown of composite heavy fermions develops at the quantum critical
point, then we expect the more abrupt changes in the Fermi surface to manifest themselves in the
Hall constant. In the simplest possible models of heavy-electron behaviour, the quasiparticles
in the Kondo lattice paramagnet are holes with a Hall constant that is opposite in sign to the
conduction electrons from which they are formed. If the change in character from conduction
electron to heavy electron were to take place at the quantum critical point, the Hall constant
might not just jump—it could even change sign at the quantum critical point. To emphasize this
more fully, consider the following toy model in which the spinorial character of the magnetism
appears in LFM :

H =
∑
kσ

εkc
†
kσ ckσ + g

∑
k,q

[s†
k−qσχ

†
q ckσ + H.c] + λ

∑
k

χ
†
kχk + LM [s]

where λ is the chemical potential of the spinless fermions. Antiferromagnetism results from
a condensation of the spinorial field, 〈sqσ 〉 = √

2MQzσ δq−σQ/2, so the effective Hamiltonian
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takes the form

H =
∑
kσ

εkc
†
kσ ckσ + g

√
MQ

∑
kσ

[χ†
k−σQ/2ckσ + H.c] + λ

∑
k

χ
†
kχk + LM [s]. (39)

Once the magnetization develops, the hybridization with the χ -fermions has two effects. First,
it changes the dispersion of the up- and down-spin quasiparticles according to

ω
(±)
k = εk + λ

2
±

√
[(εk − λ)/2]2 + g2MQ. (40)

Notice that the change in the dispersion is now first order in the magnetization. Second,
the staggered magnetization induced by the condensation of the spin bosons causes Bragg
diffraction which mixes up and down bands to produce fermions with dispersionEk determined
from the roots of the equation∏

±
(E − ω

(±)
k )(E − ω

(±)
k+Q) = (g2MQ)

2. (41)

There are two main consequences of the disintegration of the heavy fermions. First, the Fermi
surface volume now has to change to accommodate the resonances formed by the disintegration
of the heavy electrons and, second, the change in the dispersion is first order in the staggered
magnetization:

δvFS = nχ/2

∇kEk = ∇εk + O(MQ).
(42)

Suppose the spinless fermions are in equilibrium with the heavy quasiparticles at the Fermi
surface, with the result that the chemical potential λ = 0 at the quantum critical point; in this
case, nχ starts out with a finite value, and the Fermi surface volume jumps at the transition. If,
by contrast, λ �= 0 at the transition, then nχ would start out from zero, but the change in the
dispersion would still be first order in the staggered magnetization. In the former scenario, the
Hall constant jumps at the transition, whereas in the latter it evolves in direct proportion to the
change in the staggered magnetization. Summarizing:

:RH ∝
{

O(1) λ = 0

MQ λ �= 0
(composite heavy fermions). (43)

The main point (table 2) is that a large discontinuity in the gradient or jump in the Hall constant
is expected in a picture where the quantum critical point involves a breakdown of composite
heavy fermions, whereas a spin-density-wave picture predicts a continuous change in the Hall
constant with a finite jump in dRH/dP at the quantum critical point.

6. Conclusions

To conclude, we have discussed the challenge posed by the apparent divergence in quasiparticle
masses that appears to develop at a heavy-fermion quantum critical point. We have emphasized
at some length how this poses severe difficulties for a model based on the development of a
spin-density-wave instability.

This has prepared the ground for a lively debate on two different fronts. First and foremost,
do the experiments require a more complete breakdown in quasiparticle physics than that
expected from a quantum spin-density-wave instability? Second, are the quantum critical
fluctuations quasi-two dimensional in character, or does the quantum critical behaviour signal
a new class of three-dimensional quantum criticality? It is hoped that these discussions will
stimulate further experimental work. In particular, further experimental clarification would be
immensely useful in two separate respects:
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Table 2. Variation of the Hall constant expected in a spin-density-wave scenario, and a scenario
where the composite heavy fermions disintegrate at the quantum critical point. For the purposes of
illustration, it is assumed that the magnetization grows as the square root of the control parameter,
M ∝ √|P − Pc|.

R Η

Pc

M = 0

P

M = 0

Η     
α  R        M  ~ |P − P  |

2
c∆

ΗR   =  0∆ ,   λ = 0

P

Pc

M = 0

M = 0

M = 0

Pc

P

M = 0

Η     
α  R        M  ~ |P − P  |c

1/2
∆ , λ =  0

S. D. W.

Mechanism

Breakdown
of composite
Fermions

• Further evidence for the divergence of the linear specific heat and the collapse of the Fermi
temperature near a heavy-fermion quantum critical point is needed. More direct specific
heat capacity measurements and further measurements of the quadratic coefficient of the
resistivity in the approach to the quantum critical point would help to elucidate this issue.

• Careful examination of the evolution of the Hall constant at a heavy-fermion quantum
critical point will provide the means to check directly whether the Fermi surface ‘folds
and pinches’ under the influence of Bragg diffraction off a spin-density wave, with no
discontinuity in the Hall constant, or whether it undergoes a fundamental transformation
due the introduction of new fermionic resonances into the Fermi sea, producing a jump in
the Hall constant.
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